If it's not what You are looking for type in the equation solver your own equation and let us solve it.
70k^2+115k+15=0
a = 70; b = 115; c = +15;
Δ = b2-4ac
Δ = 1152-4·70·15
Δ = 9025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9025}=95$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(115)-95}{2*70}=\frac{-210}{140} =-1+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(115)+95}{2*70}=\frac{-20}{140} =-1/7 $
| 4a+5(a+2)=6a+6(a+1) | | x=1800-145-120-119-112-86 | | -2x2+10=10 | | 1.07x=154.76 | | F(2)=4-6x | | 507=m−94 | | 2x-3=17+3+32x=20÷2÷20x=1 | | -4(d+3)=8 | | (3x+5)+(7x+5)=90 | | F(0)=4-6x | | x=1440-143-142-141-125-112-105 | | m^2+4m-7=-2 | | 48n=-288 | | –5x=–25 | | 5x-12÷-3=-6 | | 3b^2+24b+43=7 | | -41=6b+1 | | 57=3x+7 | | 11-21/2x=1+11/2x | | 3(-2+x)=4x+2 | | W=0.1875/0.75h | | -2y+16=4(y-2) | | x=540-138-105-103-79 | | v-14=6v+1 | | 30=–5p+2p | | 3.2/4=5/x | | x=138+105+103+79 | | 1f=-4.2 | | 2x-9=86 | | 4/9w-1/6=-1/3 | | 6x=1-11 | | 35+2x+3=90 |